Justin Romberg

Justin Romberg
jrom@ece.gateach.edu

Dr. Justin Romberg is the Schlumberger Professor and the Associate Chair for Research in the School of Electrical and Computer Engineering and the Associate Director for the Center for Machine Learning at Georgia Tech.

Dr. Romberg received the B.S.E.E. (1997), M.S. (1999) and Ph.D. (2004) degrees from Rice University in Houston, Texas. From Fall 2003 until Fall 2006, he was a Postdoctoral Scholar in Applied and Computational Mathematics at the California Institute of Technology. He spent the Summer of 2000 as a researcher at Xerox PARC, the Fall of 2003 as a visitor at the Laboratoire Jacques-Louis Lions in Paris, and the Fall of 2004 as a Fellow at UCLA's Institute for Pure and Applied Mathematics. In the Fall of 2006, he joined the Georgia Tech ECE faculty. In 2008 he received an ONR Young Investigator Award, in 2009 he received a PECASE award and a Packard Fellowship, and in 2010 he was named a Rice University Outstanding Young Engineering Alumnus. He is currently on the editorial board for the SIAM Journal on the Mathematics of Data Science, and is a Fellow of the IEEE.

His research interests lie on the intersection of signal processing, machine learning, optimization, and applied probability.

Schlumberger Professor
Additional Research

Data Mining

IRI And Role
Data Engineering and Science > Affiliated Faculty
Data Engineering and Science > TRIAD Leadership
Data Engineering and Science
Artificial Intelligence > ITAB
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Electrical and Computer Engineering

Pamela Bhatti

Pamela Bhatti
pamela.bhatti@ece.gatech.edu

Dr. Pamela Bhatti is Professor and Associate Chair for Strategic Initiatives and Innovation at the School of Electrical and Computer Engineering, Georgia Tech. Her research is dedicated to overcoming sensory loss in human hearing through focused neural stimulation, and novel implantable sensors. Dr. Bhatti also conducts research in cardiac imaging to assess and monitor cardiovascular disease. She received her B.S. in Bioengineering from the University of California, Berkeley (1989), her M.S. in Electrical Engineering from the University of Washington (1993), and her Ph.D. in Electrical Engineering from the University of Michigan, Ann Arbor (2006). In 2013, she earned an M.S. in Clinical Research from Emory University, and co-founded a startup company (Camerad Technologies) based on her research in detecting wrong-patient errors in radiology. Dr. Bhatti is the IEEE Journal of Translational Engineering in Health and Medicine, Editor-in-Chief; and, in 2017, received the Georgia Tech Class of 1934 Outstanding Interdisciplinary Activities Award.

Assistant Professor
Phone
404-894-7467
Office
MiRC 225
Additional Research

Biomedical sensors and subsystems including bioMEMS Neural prostheses: cochlear and vestibular Vestibular rehabilitation

IRI And Role
Bioengineering and Bioscience > Faculty
Bioengineering and Bioscience
Matter and Systems
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Electrical and Computer Engineering

David S. Citrin

David S. Citrin
david.citrin@ece.gatech.edu

Professor Citrin earned a B.A. from Williams College (1985) and a M.S. (1987) and a Ph.D. (1991) from the University of Illinois, all in physics, where his dissertation was on the optical properties of semiconductor quantum wires. Subsequently, he was a post-doctoral research fellow at the Max Planck Institute for Solid State Research, Stuttgart, Germany (1992-1993) and Center Fellow at the Center for Ultrafast Optical Science at the University of Michigan (1993-1995). Dr. Citrin was an assistant professor of physics and materials science at Washington State University (1995 to 2001).

Professor Citrin joined the faculty at Georgia Tech in 2001 where his work focuses on terahertz technology and nanotechnology. He is a recipient of a Presidential Early Career Award for Scientists and Engineers and of a Friedrich Bessel Award from the Alexander Von Humboldt Stiftung. In addition, he is Project Coordinator on Nonlinear Optics and Dynamics at Georgia Tech-CNRS UMI 2958 located at Georgia Tech-Lorraine. Professor Citrin’s research in terahertz imaging is featured in the Georgia Tech press release, ”Imaging Technique Unlocks the Secrets of 17th Century Artists"; a list of some media placements from the press release may be found at http://photonics.georgiatech-metz.fr/node/33.

Research interests: 

  • Terahertz nondestructive testing of materials
  • Terahertz characterization of art and cultural heritage
  • Chaos and nonlinear dynamics in external-cavity semiconductor lasers
  • Nanophotonics
  • High-speed electronic, photonic, and optoelectronic devices
  • Nonlinear optical properties of semiconductor materials and devices
Professor
Phone
404.894.2000
Office
MIRC 211
IRI And Role
Manufacturing > Affiliated Faculty
Energy > Hydrogen Group
Matter and Systems > Affiliated Faculty
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Electrical and Computer Engineering

Amirali Aghazadeh

Amirali Aghazadeh
aaghazadeh3@gatech.edu

Amirali Aghazadeh is an Assistant Professor in the School of Electrical and Computer Engineering and also program faculty of Machine Learning, Bioinformatics, and Bioengineering Ph.D. programs. He has affiliations with the Institute for Data Engineering and Science (IDEAS) and Institute for Bioengineering and Biosciences. Before joining Georgia Tech, Aghazaeh was a postdoc at Stanford and UC Berkeley and completed his Ph.D. at Rice University. His research focuses on developing machine learning and deep learning solutions for protein and small molecular design and engineering.
 

Assistant Professor
Phone
713-257-5758
Office
CODA S1209
IRI And Role
Bioengineering and Bioscience > Faculty
Data Engineering and Science > Faculty
Data Engineering and Science
Bioengineering and Bioscience
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Electrical and Computer Engineering

Nima Ghalichechian

Nima Ghalichechian
nima.1@gatech.edu

Dr. Ghalichechian joined the Georgia Institute of Technology as an Assistant Professor in August 2021. Prior to joining Georgia Tech, he was an Assistant Professor at The Ohio State University (OSU), Columbus, from 2017 to 2021. During this period, he established the RF Microsystems Laboratory with research in the area of millimeter-wave antennas and arrays.

Dr. Ghalichechian received his B.S. in Electrical Engineering from Amirkabir University of Technology, Iran in 2001. He received his M.S. and Ph.D. in Electrical Engineering from the University of Maryland-College Park in 2005 and 2007, respectively, with research focused on electrostatic micromotors. From 2007 to 2012, he was with the Research Department of FormFactor, Inc. (Livermore, California) as a Senior Principal Engineer. During this period, he helped design and develop microsprings for advanced probe cards used in testing memory and SoC devices. Dr. Ghalichechian joined the Department of Electrical and Computer Engineering and the ElectroScience Laboratory at OSU as a Research Scientist in 2012. From 2016 to 2017, he held a Research Assistant Professor position at OSU.

Prof. Ghalichechian is currently an Associate Editor of the IEEE Antennas and Wireless Propagation Letters (AWPL). He is a recipient of the 2018 College of Engineering Lumley Research Award at OSU, 2019 NSF CAREER Award, 2019 US Air Force Faculty Summer Fellowship Award, and 2020 ECE Excellence in Teaching Award at OSU.

Assistant Professor, School of Electrical and Computer Engineering
Associate Director, Georgia Electronic Design Center
Phone
404-894-5867
Office
TSRB 534
Additional Research

Millimeter-wave (30-300 GHz) antennas and arrays5G/6G antenna systemsReconfigurable antennas and componentsOn-chip antennas and arraysReflectarrays and phased arraysExploiting non-linear properties of phase-change materials for RF sensors

IRI And Role
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Electrical and Computer Engineering

Suman Datta

Suman Datta
sdatta68@gatech.edu

Suman Datta is the Joseph M Pettit Chair of Advanced Computing and Georgia Research Alliance (GRA) Eminent Scholar and Professor in the School of Electrical and Computer Engineering at Georgia Tech. He received his B.Tech degree in electrical engineering from the Indian Institute of Technology, Kanpur, India, and his Ph.D. degree in electrical and computer engineering from the University of Cincinnati, Ohio. His research group focuses on semiconductor devices that enable new compute models such as in-memory compute, brain-inspired compute, cryogenic compute, resilient compute etc.

From 2015 to 2022, Datta was the Stinson Endowed Chair Professor of Nanotechnology in the Electrical Engineering Department at the University of Notre Dame, where he was the Director of a multi-university microelectronics research center, ASCENT, funded by the Semiconductor Research Corporation (SRC) and the Defense Advanced Research Projects Agency (DARPA). Datta also served as the Director of a six-university research center for Extremely Energy Efficient Collective Electronics (EXCEL), funded by the SRC and National Science Foundation (NSF) to explore an alternate computing hardware that leverages continuous-time dynamics of emerging devices to execute optimization, learning, and inference tasks.

From 2007 to 2015, he was a Professor of Electrical Engineering at The Pennsylvania State University, where his group pioneered advances in compound semiconductor-based quantum-well field effect transistors and tunneling field effect transistors.

From 1999 to 2007, he was in the Advanced Transistor Group at Intel Corporation, where he led device R&D effort for several generations of high-performance logic transistors such as high-k/metal gate, Tri-gate and strained channel CMOS transistors. He has published over 425 journal and refereed conference papers and holds more than 187 issued patents related to semiconductor devices. In 2013, Datta was named a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) for his contributions to high-performance advanced silicon and compound semiconductor transistor technologies. In 2016, he was named Fellow of the National Academy of Inventors (NAI) in recognition of his inventions that have made a tangible impact on quality of life, economic development, and the welfare of society.

Joseph M. Pettit Chair of Advanced Computing
Professor, School of Electrical and Computer Engineering
Georgia Research Alliance (GRA) Eminent Scholar
Office
Klaus 2360
Additional Research

High-performance heterogenous compute with advanced CMOSBrain-inspired collective state computing with advanced CMOS and beyond-CMOS semiconductorsEmerging semiconductors like ferroelectric field effect transistors, insulator-to-metal phase transition oxides, high mobility semiconducting oxides for near and in-memory compute and storageSemiconductors for cryogenic computing and harsh environment computing

IRI And Role
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Electrical and Computer Engineering
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

William Hunt

William Hunt
bill.hunt@ece.gatech.edu

Hunt grew up in the literary haven of Columbus, Mississippi, the boyhood home of Tennessee Williams, and received his B.S.E.E. from the University of Alabama in 1976. He worked for Harris Corporation for two years in the areas of acousto-optics and surface acoustic wave (SAW). He then entered the Massachusetts Institute of Technology where he earned his S.M.E.E. in 1980 and conducted research in the field of auditory physiology. After four years with Bolt, Beranek and Newman, Inc. he entered the University of Illinois, Champaign-Urbana where he received his Ph.D. in electrical engineering in 1987. His research there was on acoustic charge transport (ACT) devices and the SAW properties of Gallium Arsenide.

Hunt joined the faculty of the Georgia Institute of Technology in the fall of 1987 as one of the original members of the Pettit Microsystems Research Center. There he founded the Microelectronic Acoustics Group which focuses on the development of ultrasonic devices that can be integrated with Microsystems. Among these have been, ACT devices, micromachined polyvinylidene fluoride-trifluoroethylene (PVDF)-based transducers for intravascular ultrasound, acousto-optic devices for tunable lasers as well as SAW and bulk acoustic wave (BAW) devices for wireless and chemical sensor applications.

Professor, School of Electrical and Computer Engineering
Director, Microelectronic Acoustics Group
Phone
404.894.2945
Office
MiRC 221
Additional Research

Piezoelectronic Materials; Thin Films; Acoustics and Dynamics; Bio-Devices; Fabrication

IRI And Role
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Electrical and Computer Engineering

William Doolittle

William Doolittle
alan.doolittle@ece.gatech.edu

During my research career I have observed “new” material systems develop and offer promise of wondrous device performance improvements over the current state of the art. Many of these promises have been kept, resulting in numerous new devices that could never have been dreamed of just a few short years ago. Other promises have not been fulfilled, due, in part, to a lack of understanding of the key limitations of these new material systems. Regardless of the material in question, one fact remains true: Without a detailed understanding of the electrical and optical interaction of electronic and photonic “particles” with the material and defect environment around them, novel device development is clearly impeded. It is not just a silicon world! Modern electronic/optoelectronic device designs (even silicon based devices) utilize many diverse materials, including mature dielectrics such as silicon dioxide/nitrides/oxynitrides, immature ferroelectric oxides, silicides, metal alloys, and new semiconductor compounds. Key to the continued progress of electronic devices is the continued development of a detailed understanding of the interaction of these materials and the defects and limitations inherent to each material system. It is my commitment to insure that new devices are continuously produced based on complex mixed family material systems.

Joseph M. Pettit Professor, School of Electrical and Computer Engineering
Phone
404.894.9884
Office
MIRC 209
Additional Research

Compund semiconductors, optical materials, III-V semiconductor devices

IRI And Role
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Electrical and Computer Engineering

Manos Tentzeris

Manos  Tentzeris
etentze@ece.gatech.edu

Manos Tentzeris was born and grew up in Piraeus, Greece. He graduated from Ionidios Model School of Piraeus in 1987 and he received the Diploma degree in Electrical Engineering and Computer Science (Magna Cum Laude) from the National Technical University in Athens, Greece, in 1992 and the M.S. and Ph.D. degrees in Electrical Engineering and Computer Science from the University of Michigan, Ann Arbor in 1993 and 1998. He is currently a Professor with the School of ECE, Georgia Tech and he has published more than 550 papers in refereed Journals and Conference Proceedings, 4 books and 23 book chapters, while he is in the process of writing 1 book. He has served as the Head of the Electromagnetics Technical Interest Group of the School of ECE, Georgia Tech. Also, he has served as the Georgia Electronic Design Center Associate Director for RFID/Sensors research from 2006-2010 and as the GT-Packaging Research Center (NSF-ERC) Associate Director for RF research and the leader of the RF/Wireless Packaging Alliance from 2003-2006. Also, Dr. Tentzeris is the Head of the A.T.H.E.N.A. Research Group (20 students and researchers) and has established academic programs in 3D Printed RF electronics and modules, flexible electronics, origami and morphing electromagnetics, Highly Integrated/Multilayer Packaging for RF and Wireless Applications using ceramic and organic flexible materials, paper-based RFID 's and sensors, inkjet-printed electronics, nanostructures for RF, wireless sensors, power scavenging and wireless power transfer, Microwave MEM 's, SOP-integrated (UWB, mutliband, conformal) antennas and Adaptive Numerical Electromagnetics (FDTD, MultiResolution Algorithms). He was the 1999 Technical Program Co-Chair of the 54th ARFTG Conference and he is currently a member of the technical program committees of IEEE-IMS, IEEE-AP and IEEE-ECTC Symposia. He was the TPC Chair for the IMS 2008 Conference and the Co-Chair of the ACES 2009 Symposium. He was the Chairman for the 2005 IEEE CEM-TD Workshop. He was the Chair of IEEE-CPMT TC16 (RF Subcommittee) and he was the Chair of IEEE MTT/AP Atlanta Sections for 2003. He is a Fellow of IEEE, a member of MTT-15 Committee, an Associate Member of European Microwave Association (EuMA), a Fellow of the Electromagnetics Academy, and a member of Commission D, URSI and of the the Technical Chamber of Greece. He is the Founder and Chair of the newly formed IEEE MTT-S TC-24 (RFID Technologies). He is one of the IEEE C-RFID DIstinguished Lecturers and he has served as one IEEE MTT-Distinguished Microwave Lecturers (DML) from 2010-2012. His hobbies include basketball, swimming, ping-pong and travel.

Ken Byers Professor in Flexible Electronics, School of Electrical and Computer Engineering
Phone
404.385.1478
Office
TSRB 539
Additional Research

3D-Printed/Inkjet-Printed RF Electronics, Batteries and Sensors "Green" and sustainable energy harvesting (e.g. RF, mechanical, thermal, UV) and Wireless Power Transfer systemsNanotechnology-based Ultrasensitive Sensors Origami Antennas and RF Modules with Morphing Characteristics Novel Flexible Electronics, Packaging & 3D Modules up to mm-wave Frequency-range Wearable and Implantable Wireless Body-Area Networks Internet of Things, "Smart Skin", "Zero-Power", and "Smart Energy" ApplicationsReal-Time Multiresolution Algorithms for the Analysis and Design of Wireless Communication Front-Ends.Novel RFID Antennas, Architectures and Sensor Systems

IRI And Role
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Electrical and Computer Engineering

Arijit Raychowdhury

Arijit Raychowdhury
arijit.raychowdhury@ece.gatech.edu

Arijit Raychowdhury is currently an Professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology where he joined in January, 2013. He received his Ph.D. degree in Electrical and Computer Engineering from Purdue University (2007) and his B.E. in Electrical and Telecommunication Engineering from Jadavpur University, India (2001). His industry experience includes five years as a Staff Scientist in the Circuits Research Lab, Intel Corporation, and a year as an Analog Circuit Designer with Texas Instruments Inc. His research interests include low power digital and mixed-signal circuit design, design of power converters, sensors and exploring interactions of circuits with device technologies. Raychowdhury holds more than 25 U.S. and international patents and has published over 80 articles in journals and refereed conferences. He serves on the Technical Program Committees of DAC, ICCAD, VLSI Conference, and ISQED and has been a guest associate-editor for JETC. He has also taught many short courses and invited tutorials at multiple conferences, workshops and universities. He is the winner of the Intel Labs Technical Contribution Award, 2011; Dimitris N. Chorafas Award for outstanding doctoral research, 2007; the Best Thesis Award, College of Engineering, Purdue University, 2007; Best Paper Awards at the International Symposium on Low Power Electronic Design (ISLPED) 2012, 2006; IEEE Nanotechnology Conference, 2003; SRC Technical Excellence Award, 2005; Intel Foundation Fellowship, 2006; NASA INAC Fellowship, 2004; M.P. Birla Smarak Kosh (SOUTH POINT) Award for Higher Studies, 2002; and the Meissner Fellowship 2002. Raychowdhury is a Senior Member of the IEEE

Chair, School of Electrical and Computer Engineering
ON Semiconductor Professor, School of Electrical and Computer Engineering
Phone
404.894.1789
Office
Klaus 2362
Additional Research

Design of low power digital circuits with emphasis on adaptability and resiliencyDesign of voltage regulators, adaptive clocking, and power managementDevice-circuit interactions for logic and storageAlternative compute architectures

IRI And Role
Bioengineering and Bioscience > Faculty
Matter and Systems > Affiliated Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Electrical and Computer Engineering