Rudolph Gleason

Rudolph Gleason
rudy.gleason@me.gatech.edu

Rudolph (Rudy) L. Gleason began at Tech in Fall 2005 as an assistant professor. Prior, he was a postdoctoral fellow at Texas A&M University. He is currently a professor in the School of Mechanical Engineering and the School of Biomedical Engineering in the College of Engineering. Gleason’s research program has two key and distinct research aims. The first research aim is to quantify the link between biomechanics, mechanobiology, and tissue growth and remodeling in diseases of the vasculature and other soft tissues. The second research aim is to translate engineering innovation to combat global health disparities and foster sustainable development in low-resource settings around the world. Gleason serves as a Georgia Tech Institute for People and Technology initiative lead for research activities related to global health equity and wellbeing.

Professor, Mechanical Engineering and Biomedical Engineering
Joint Appointment in the School of Biomedical Engineering
Phone
404-385-7218
Office
TEP 205
Additional Research

Cardiovascular mechanics, soft tissue growth and remodeling, and tissue engineering

IRI And Role
Bioengineering and Bioscience > Faculty
People and Technology > Affiliated Faculty
People and Technology > Leadership
Matter and Systems > Affiliated Faculty
People and Technology
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering

Min Zhou

Min Zhou
min.zhou@me.gatech.edu

Zhou's research interests concern material behavior over a wide range of length scales. His research emphasizes finite element and molecular dynamics simulations as well as experimental characterization with digital diagnostics. The objective is to provide guidance for the enhancement of performance through material design and synthesis. Zhou maintains a high-performance computer cluster with 384 parallel processors and an intermediate-to-high strain rate material research facility which includes a split Hopkinson pressure bar apparatus, a tension bar apparatus, and a combined torsion-tension/torsion-compression bar apparatus.

Recent research focuses on the characterization of the dynamic shear failure resistance of structural metals and the role of microscopic damage in influencing failure processes through shear banding and fracture. Micromechanical models are developed to outline microstructural adjustments that can improve the performance of materials such as metal matrix composites, ceramic composites, composite laminates and soft composites. These models explicitly account for random microstructures as well as random crack and microcrack development. At the nanoscale, ongoing research focuses on the novel shape memory and pseudoelasticity that were recently discovered in metal (e.g., Cu, Au and Ni) nanowires. The coupling between the thermal and mechanical responses of semiconducting oxide (e.g., ZnO and GaN) nanowires is another active research direction which uses molecular dynamics simulations and continuum modeling. Dr. Zhou's group is also actively engaged in research on the equivalent continuum (EC) representation of atomistic deformation at different length scales. Related research projects are sponsored by the National Science Foundation (NSF), NASA, the Air Force Office of Scientific Research (AFOSR), the Air Force Research Lab (AFRL), the Office of Naval Research (ONR), the Army Research Office (ARO), industry, and the Center for Computational Materials Design (CCMD).

George W. Woodruff Professorship, Woodruff School of Mechanical Engineering
Phone
404.894.3294
Office
MRDC 4109
Additional Research

Computational MechanicsFracture & FatigueMechanics of Materials & ManufacturingMicro- and Nanoscale BehaviorNanomechanics.  

IRI And Role
Manufacturing > Affiliated Faculty
Matter and Systems > Affiliated Faculty
Manufacturing
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering

Gleb Yushin

Gleb Yushin
gleb.yushin@mse.gatech.edu

Gleb Yushin is a Professor at the School of Materials Science and Engineering at Georgia Institute of Technology and a Co-Founder of several companies, including Sila Nanotechnologies, Inc.. For his contributions to materials science, Yushin has received numerous awards and recognitions, including Kavli Fellow Award, R&D 100 Award (Y-Carbon's application), Honda Initiation Grant Award, National Science Foundation CAREER Award, Air Force Office of Scientific Research Young Investigator Award, and several distinctions from National Aeronautics and Space Administration (NASA), such as Nano 50 Award. Dr. Yushin has co-authored over 30 patents and patent applications, over 100 invited presentations and seminars and over 100 publications on nanostructured Electronic Materials related applications, including papers in Science, Nature Materials and other leading journals. His current research is focused on advancing energy storage materials and devices for electronics, transportation and grid applications.

Professor, School of Materials Science and Engineering
Phone
404.385.3261
Office
Love 371
Additional Research

CharacterizationMeasurementsPhotovoltaicsPolymersProcessing, Fabrication, & ManufacturingSynthesis

IRI And Role
Bioengineering and Bioscience > Faculty
Energy > Research Community
Matter and Systems > Affiliated Faculty
Bioengineering and Bioscience
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

Shimeng Yu

Shimeng Yu
shimeng.yu@ece.gatech.edu

Shimeng Yu is a professor of electrical and computer engineering at the Georgia Institute of Technology. He received the B.S. degree in microelectronics from Peking University in 2009, and the M.S. degree and Ph.D. degree in electrical engineering from Stanford University in 2011 and 2013, respectively. From 2013 to 2018, he was an assistant professor at Arizona State University.

Yu’s research interests are semiconductor devices and integrated circuits for energy-efficient computing systems. His expertise is on the emerging non-volatile memories (e.g., RRAM, ferroelectrics) for applications such as AI hardware, in-memory computing, 3D integration, etc.

Among Yu’s honors, he was a recipient of NSF Faculty Early CAREER Award in 2016, IEEE Electron Devices Society (EDS) Early Career Award in 2017, ACM Special Interests Group on Design Automation (SIGDA) Outstanding New Faculty Award in 2018, Semiconductor Research Corporation (SRC) Young Faculty Award in 2019, ACM/IEEE Design Automation Conference (DAC) Under-40 Innovators Award in 2020, IEEE Circuits and Systems Society (CASS) Distinguished Lecturer for 2021-2022, and IEEE EDS Distinguished Lecturer for 2022-2023, etc.

Yu is active in professional services. He served or is serving technical program committee for IEEE International Electron Devices Meeting (IEDM), IEEE Symposium on VLSI Technology and Circuits, ACM/IEEE Design Automation Conference (DAC), ACM/IEEE Design, Automation & Test in Europe (DATE), ACM/IEEE International Conference on Computer-Aided-Design (ICCAD), etc.  He is an editor of IEEE Electron Device Letters and a senior member of the IEEE.

Professor, School of Electrical and Computer Engineering
Phone
404.894.2571
Office
Pettit 116
Additional Research

Nanoelectronic DevicesNon-volatile MemoriesIntegrated Circuit DesignElectronic Design Automation (EDA)Deep Learning AcceleratorHardware Security

IRI And Role
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Electrical and Computer Engineering

W. Hong Yeo

W. Hong Yeo
woonhong.yeo@me.gatech.edu

W. Hong Yeo is a TEDx alumnus and biomechanical engineer. Since 2017, Yeo is a professor of the George W. Woodruff School of Mechanical Engineering and Program Faculty in Bioengineering at the Georgia Institute of Technology. Before joining Georgia Tech, he has worked at Virginia Commonwealth University Medicine and Engineering as an assistant professor from 2014-2016. Yeo received his BS in mechanical engineering from INHA University, South Korea in 2003 and he received his Ph.D. in mechanical engineering and genome sciences at the University of Washington, Seattle in 2011. From 2011-2013, he worked as a postdoctoral research fellow at the Beckman Institute and Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign. His research focuses on the fundamental and applied aspects of nanomechanics, biomolecular interactions, soft materials, and nano-microfabrication for nanoparticle biosensing and unusual electronic system development, with an emphasis on bio-interfaced translational nanoengineering. is an Editorial Board Member of Scientific Reports (Nature Publishing Group) and Scientific Pages of Bioengineering, and Review Editor of Frontiers of Materials (Frontiers Publishing Group). He serves as a technical committee member for IEEE Electronic Components and Technology Conference and Korea Technology Advisory Group at Korea Institute for Advancement of Technology. He has published more than 40 peer-reviewed journal articles, and has three issued and more than five pending patents. His research has been funded by MEDARVA Foundation, Thomas F. and Kate Miller Jeffress Memorial Trust, CooperVision, Inc., Korea Institute of Materials Science, Commonwealth Research Commercialization, and State Council of Virginia. Yeo is a recipient of a number of awards, including BMES Innovation and Career Development Award, Virginia Commercialization Award, Blavatnik Award Nominee, NSF Summer Institute Fellowship, Notable Korean Scientist Awards, and Best Paper/Poster Awards at ASME conferences.

Professor, Woodruff School of Mechanical Engineering
Faculty, Wallace H. Coulter Department of Biomedical Engineering
Director, WISH Center
Phone
404.385.5710
Office
Pettit 204
Additional Research

Human-machine interface; hybrid materials; bio-MEMS; Soft robotics. Flexible Electronics; Human-machine interface; hybrid materials; Electronic Systems, Devices, Components, & Packaging; bio-MEMS; Soft robotics. Yeo's research in the field of biomedical science and bioengineering focuses on the fundamental and applied aspects of biomolecular interactions, soft materials, and nano-microfabrication for the development of nano-biosensors and soft bioelectronics.

IRI And Role
Bioengineering and Bioscience > Faculty
People and Technology > Affiliated Faculty
Robotics > Core Faculty
Matter and Systems > Affiliated Faculty
People and Technology
Robotics
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering

Younan Xia

Younan Xia
younan.xia@bme.gatech.edu

Xia is the Brock Family Chair and Georgia Research Alliance (GRA) Eminent Scholar in Nanomedicine in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, with joint appointments in School of Chemistry and Biochemistry, and School of Chemical and Biomolecular Engineering. Professor Xia received his Ph.D. degree in Physical Chemistry from Harvard University (with Professor George M. Whitesides) in 1996, his M.S. degree in Inorganic Chemistry from University of Pennsylvania (with the late Professor Alan G. MacDiarmid, a Nobel Laureate in Chemistry, 2000) in 1993, and his B.S. degree in Chemical Physics from the University of Science and Technology of China (USTC) in 1987. He came to the United States of America in 1991. Xia has received a number of prestigious awards, including the 2013 Nano Today Award, the ACS National Award in the Chemistry of Materials (2013), Fred Kavli Distinguished Lecture in Nanoscience at the MRS Spring Meeting (2013), AIMBE Fellow (2011), MRS Fellow (2009 ), NIH Director's Pioneer Award (2006), ACS Leo Hendrik Baekeland Award (2005), Camille Dreyfus Teacher Scholar (2002), David and Lucile Packard Fellowship in Science and Engineering (2000), Alfred P. Sloan Research Fellow (2000), NSF Early Career Development Award (2000), ACS Victor K. LaMer Award (1999), and Camille and Henry Dreyfus New Faculty Award (1997). Xia has been an Associate Editor of Nano Letters since 2002, and has served on the Advisory Boards of Particle & Particle Systems Characterization (2013-), Chemical Physics Letters (2013-), Chemistry: A European Journal (2013-), Chinese Journal of Chemistry (2013-), Angewandte Chemie International Edition (2011-), Advanced Healthcare Materials (2011-, inaugural chairman of the advisory board), Accounts of Chemical Research (2010-), Cancer Nanotechnology (2010-), Chemistry: An Asian Journal (2010-), Journal of Biomedical Optics (2010-), Nano Research (2009-), Science of Advanced Materials (2009-), Nano Today (2006-), Chemistry of Materials (2005-2007), Langmuir (2005-2010, 2013-2015), International Journal of Nanotechnology (2004-), and Advanced Functional Materials (2001-). He has also served as a Guest Editor of special issues for Advanced Materials (six times), Advanced Functional Materials (one time), MRS Bulletin (one time), and Accounts of Chemical Research (one time).

GRA Eminent Scholar in Nanomedicine, Wallace H. Coulter Department of Biomedical Engineering
Professor, Wallace H. Coulter Department of Biomedical Engineering
Brock Family Chair, Wallace H. Coulter Department of Biomedical Engineering
Professor, School of Chemistry and Biochemistry, and School of Chemical and Biomolecular Engineering
Phone
404.385.3209
Office
MSE 3100J
Additional Research
Catalysis; Nanomedicine; Bio-Inspired Materials; Tissue Engineering
IRI And Role
Bioengineering and Bioscience > Faculty
Matter and Systems > Affiliated Faculty
Bioengineering and Bioscience
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Coulter Department of Biomedical Engineering

Yan Wang

Yan Wang
yan.wang@me.gatech.edu

Wang's research is in the areas of design, manufacturing, and Integrated computational materials engineering. He is interested in computer-aided design, geometric modeling and processing, computer-aided manufacturing, multiscale simulation, and uncertainty quantification.

Currently, Wang studies integrated product-materials design and manufacturing process design, where process-structure-property relationships are established with physics-based data-driven approaches for design optimization. The Multiscale Systems Engineering research group led by him develops new methodologies and computational schemes to solve the technical challenges of high dimensionality, high complexity, and uncertainty associated with product, process, and systems design at multiple length and time scales.

Computational design tools for multiscale systems with sizes ranging from nanometers to kilometers will be indispensable for engineers' daily work in the near future. The research mission of the Multiscale Systems Engineering group is to create new modeling and simulation mechanisms and tools with underlying scientific rigor that are suitable for multiscale systems engineering for better and faster product innovation. Our education mission is to train engineers of the future to gain necessary knowledge as well as analytical, computational, communication, and self-learning skills for future work in a collaborative environment as knowledge creators and integrators. 

Professor, Woodruff School of Mechanical Engineering
Phone
404.894.4714
Office
Callaway 472
Additional Research

Computer-aided engineering and design and manufacturing, modeling and simulation, nanoscale cad/cam/cae, product lifecycle management, applied algorithms, uncertainty modeling, multiscale modeling, materials design

IRI And Role
Manufacturing > Affiliated Faculty
Data Engineering and Science > Faculty
Renewable Bioproducts > Faculty
Matter and Systems > Affiliated Faculty
Manufacturing
Data Engineering and Science
Renewable Bioproducts
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering

Eric Vogel

Eric Vogel
eric.vogel@mse.gatech.edu

Eric M. Vogel is currently professor of Materials Science and Engineering at the Georgia Institute of Technology. Prior to joining Tech in August 2011, he was an associate professor of Materials Science and Engineering and electrical engineering at the University of Texas at Dallas (UT Dallas) where he was also associate director of the Texas Analog Center of Excellence and led UT Dallas's portion of the Southwest Academy for Nanoelectronics. Prior to joining UT Dallas in August of 2006, he was leader of the Semiconductors and Novel Devices Group and founded the Nanofab at the National Institute of Standards and Technology. He received his Ph.D. in 1998 in electrical engineering from North Carolina State University and his B.S. in 1994 in electrical engineering from Penn State University. Professor Vogel's research interests relate to materials and devices for future micro-/nano-electronics. He has published over 150 journal publications and proceedings, written six book chapters and given over 75 invited talks and tutorials.

Executive Director
Professor, School of Materials Science and Engineering
Phone
404.385.7235
Office
Marcus 2133
Additional Research

2D materials, Electronic Materials, biosensors, Atomic Layer Deposition, III-V Semiconductor devices

IRI And Role
Renewable Bioproducts > Faculty
Matter and Systems > Affiliated Faculty
Matter and Systems > Leadership
Renewable Bioproducts
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > School of Materials Science Engineering

Natalie Stingelin

Natalie  Stingelin
natalie.stingelin@mse.gatech.edu

Previously a professor of organic functional materials at the Department of Materials, Imperial College of London, Natalie Stingelin joined Georgia Tech in 2016. She focuses her research on the broad field of organic functional materials, including organic electronics; multifunctional inorganic/organic hybrids; smart, advanced optical systems based on organic matter; and bioelectronics. Associate Editor of the Journal of Materials Chemistry, she has published more than 130 papers and 6 issued patents. She is a co-investigator of the newly established EPSRC Centre for Innovative Manufacturing in Large Area Electronics, and she leads the EC Marie-Curie Training Network 'INFORM' that involves 11 European partners. She was awarded the Institute of Materials, Minerals & Mining's Rosenhain Medal and Prize (2014) and the Chinese Academy of Sciences (CAS) President's International Fellowship Initiative (PIFI) Award for Visiting Scientists (2015).

Professor, School of Chemical and Biomolecular Engineering
Phone
404.894.5192
Office
ES&T L1220
Additional Research

Organic electronics; Bioelectronics

IRI And Role
Renewable Bioproducts > Faculty
Energy > Research Community
Matter and Systems > Affiliated Faculty
Renewable Bioproducts
Energy
University, College, and School/Department
Georgia Institute of Technology > College of Engineering

Suresh Sitaraman

Suresh Sitaraman
suresh.sitaraman@me.gatech.edu

Suresh Sitaraman is a Professor in the George W. Woodruff School of Mechanical Engineering, and leads the Flexible Hybrid Electronics Initiative at Georgia Tech and directs the Computer-Aided Simulation of Packaging Reliability (CASPaR) Lab at Georgia Tech. He is a Thrust Leader/Faculty Member, Reliability/Mechanical Design Research, 3D Systems Packaging Research Center; a Faculty Member, Georgia Tech Manufacturing Institute; a Faculty Member, Interconnect and Packaging Center, an SRC Center of Excellence, Institute for Electronics and Nanotechnology; a Faculty Member, Nanoscience and Nanotechnology, Nanotechnlogy Research Center, Institute for Electronics and Nanotechnology; a Faculty Member, Institute of Materials. Dr. Suresh Sitaraman's research is exploring new approaches to develop next-generation microsystems. In particular, his research focuses on the design, fabrication, characterization, modeling and reliability of micro-scale and nano-scale structures intended for microsystems used in applications such as aerospace, automotive, computing, telecommunicating, medical, etc. Sitaraman's research is developing physics-based computational models to design flexible as well as rigid microsystems and predict their warped geometry and reliability. His virtual manufacturing tools are able to simulate sequential fabrication and assembly process mechanics to be able to enhance the overall yield, even before prototypes are built. Sitaraman's work is developing free-standing, compliant interconnect technologies that can mechanically decouple the chip from the substrate without compromising the overall electrical functionality. This work is producing single-path and multi-path interconnect technologies as well as nanowire and carbon nanotube interconnects for electrical and thermal applications, and such interconnect technologies can be employed in flexible as well as 3D microelectronic systems. Sitaraman's research is also developing innovative material characterization techniques such as the stressed super layer technique as well as magnetic actuation test that can be used to study monotonic and fatigue crack propagation in nano- and micro-scale thin film interfaces. In addition, Sitaraman has developed fundamental modeling methodologies combined with leading-edge experimentation techniques to study delamination in the dielectric material and copper interface used in back-end-of-the-line (BEOL) stacks and through-silicon vias as well as epoxy/copper and epoxy/glass interfaces as in microelectronic packaging and photovoltaic module applications. Examining the long-term operational as well as accelerated thermal cycling reliability of solder interconnects, his work has direct implications in implantable medical devices, photovoltaic modules, computers and smart devices as well as rugged automobile and aerospace applications. Through the above-mentioned fundamental and applied research and development pursuits, Sitaraman's work aims to address some of the grand challenges associated with clean energy, health care, personal mobility, security, clean environment, food and water, and sustainable infrastructure

Regents' Professor, Woodruff School of Mechanical Engineering
Morris M. Bryan, Jr. Professor, Woodruff School of Mechanical Engineering
Phone
404.894.3405
Office
MARC 471
Additional Research

Computer-Aided Engineering; micro and nanomechanics; Fabrication; Modeling; fracture and fatigue; Flexible Electronics; Emerging Technologies

IRI And Role
Matter and Systems > Affiliated Faculty
University, College, and School/Department
Georgia Institute of Technology > College of Engineering > Woodruff School of Mechanical Engineering